If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2=144
We move all terms to the left:
f^2-(144)=0
a = 1; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·1·(-144)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*1}=\frac{-24}{2} =-12 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*1}=\frac{24}{2} =12 $
| 5y+(3y-3)=6y+11 | | 55=2w+17 | | 36-2n=-5n+6(1-2n) | | 48=6(x+1) | | 14+21m=28+14m | | -7-10n=-137 | | -47=-2n-9 | | 2(3-h)-6=-5 | | -3=-10p-3 | | -9+3n=48 | | -32=10+6x | | 8x-5;x=4 | | 6x+3=21+4x | | 3y-36+y=368 | | 101=39+o | | 56+d=61 | | -64=-5x-8 | | -(8x-3)-(3x-5)+11=-12(x-1)-(2x+11)+3 | | 9x+27+6x+66=180 | | 5(x+12)+2x-6=180 | | 372+x=392 | | 3.3x+3=16.2 | | 4z/9+1=-6 | | 7x=3.36 | | 3/4a=11 | | 4x+20=55 | | 3–(1–6x)=2+4x | | 47+x=430 | | 2x^=128 | | 6x2-8=4x2+7x | | 4a+26=5a+2 | | (2x+15)=(3x+20) |